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We describe an implementation of the conjugate gradient method on 
VICTOR, a 256-node message-passing MIMD parallel computer based 
on the T800 transputer, developed at IBM, Yorktown Heights. A 
detailed performance analysis is also presented for this algorithm on a 
simple but representative application (Poisson’s equation in a square 
region discretized using bilinear finite elements). 0 1332 Academic 

Press. Inc 

1. INTRODUCTION 

We describe an implementation of the conjugate gradient 
method for symmetric, positive-definite matrix systems on a 
message-passing multiprocessor. The matrices are assumed 
to be derived from the uniform finite element discretization 
of second-order, elliptic partial differential equations on 
two-dimensional rectangular domains. This assumption is 
primarily made to simplify the programming and analysis, 
but we note that by using standard tools such as conformal 
mapping and coordinate stretching, more general polygon 
domains and graded discretizations can also be treated by 
the present approach. 

Performance measurements on the VICTOR parallel 
computer are presented and analyzed for a representative 
self-adjoint model problem (Poisson’s equation on a square 
region discretized by bilinear finite elements) as described 
in further detail below. For the nonsymmetric matrices 
obtained from non-self-adjoint problems, another algo- 
rithm (the conjugate gradient squared algorithm of 
Sonneveld [ 11) has also been implemented and analyzed. 
However, the low-level details for the nonsymmetric case 
do not raise any new significant implementation or 
performance issues, and we therefore omit many of these 
details here for the sake of brevity. 

2. ARCHITECTURAL DESCRIPTION 

VICTOR is a 256-node, message-passing MIMD com- 
puter developed in the Computer Sciences department at 
IBM, Yorktown Heights (Wilcke et al. [4]). The node 
processor is the INMOS T8OO transputer, which is a 32-bit 

microprocessor with a 20-MHz clock cycle, 4 Mbytes of 
on-chip RAM, and a built-in FPU. Each node transputer is 
connected through four 20-Mbit/s serial links to other 
nodes in a mesh topology, except for designated nodes on 
the edge of this mesh which are connected to disks, graphics 
devices, and host computers. Multiple user programs can 
execute without interference or performance penalty on 
distint subpartitions of the 16 x 16 processor mesh. For 
example, this means that four different users can be 
simultaneously space-sharing the machine, with each using 
a distinct 8 x 8 subpartition. A non-intrusive monitoring 
tool provides a visual display of memory and link activity in 
the nodes during program execution, which is particularly 
helpful for detecting runtime execution errors. 

3. PROGRAMMING ENVIRONMENT 

The Express programming environment in the so-called 
“Cubix” mode is used for program development (Fox et al. 
[S]). Here, the same program executes on all the nodes, 
but although individual nodes are programmed 
homogeneously, they can have different execution paths 
through this program, synchronizing with other processors 
only for message passing (either directly, or indirectly as a 
intermediate node for routing messages). 

The node programs are written in FORTRAN, which is 
augmented by subroutine calls to Express library functions 
for message-passing. In addition to the basic point-to-point 
message-passing routines, Express provides various 
optimized high-level subroutine utilities that can facilitate 
program development, of which two deserve special men- 
tion in the context of the present application. The first is a 
“combining” function for performing global operations on 
data in the individual processors (for operators that are 
commutative and associative). The second is a set of utilities 
for embedding multidimensional grid topologies in the 
actual hardware, which allows programs to be written in 
terms of the logical geometric connectivity of the problem 
without concern for the actual hardware topology, while 
retaining full program portability. 
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4. ALGORITHM DETAILS 

The basic (preconditioned) conjugate gradient algorithm 
for solving matrix systems of the form Ax = b is shown 
below [6] 

conjugate gradient (CG): 
x0 = initial solution guess 
r,=b-Ax, 
s,=W’r, 
PO = so 
po=s;.r, 
for k = 0, 1, . . . . until convergence do 
begin 
qk = AP, 
ak=d.qk 

ak = pkbk 

xk+l =Xk+tlkPk 

rkil=rk-akqk 

s k+l=Mplrk+l 

Pk+1=~kT+1.~k+l 

bk=Pk+I/Pk 

Pk+l=Sk+l+bkPk 

enddo 

In this paper we only consider the unpreconditioned 
version of the algorithm, for which in each iteration, the 
arithmetic work is comprised of one matrix-vector multi- 
plication to obtain qk, three saxpy operations to obtain 
Xk+13 rk+lJ Pkfl, and two dot-product operations to 
obtain ok and ljkr respectively. The storage requirements 
beyond that for the matrix A and the right-hand side vector 
b, are the four vectors for the most recent values of x, r, q, 
p which are overwritten on each iteration. Another vector 
for the most recent value of s is also required if 
preconditioning is used, in addition to any storage for the 
preconditioner itself. 

5. IMPLEMENTATION DETAILS 

The use of preconditioning in the conjugate gradient 
algorithm reduces the number of iterations required for 
convergence, and the trade-off between the cost of applying 
the preconditioner and the improved convergence due to 
using it must then be considered. For the unpreconditioned 
algorithm, however, it is sufficient to consider the cost per 
iteration, which is simply given by 

T,, = T,, + 3T, + 2T,, (4.1) 

where TM,, T,, TD, are the costs of a matrix-vector 
multiplication, a saxpy, and a dot-product, respectively (in 
units of seconds). The cost of these three primitives will 
depend on certain problem and implementation details, as 
discussed in detail below. 

The basic strategy for partitioning the problem among 
the processors is domain decomposition. We partition the 
domain into P open, connected, and disjoint (non-overlap- 
ping) regions, denoted by 52,, so that Q = Up 52, and 
SZ,n sZ,= 4, i# j, where P is the number of processors. 
Furthermore, we assume that the boundaries between any 
two adjacent subdomains, say 52, and Qj (denoted by r,) 
correspond to the edges or faces of a conforming finite 
element mesh on Q. Note that U Tlj- n TV= 80, fij = r,,, 
and Tii = 4 unless there are some nodal points that belong 
to the interfaces of Q, and Q,. The underlying assumption 
here is that the finite element mesh partitioning is much 
finer than the subdomain partitioning. Now each 
subdomain is assigned to a processor that is responsible for 
performing the computations involving the nodal variables 
and equations that belong to it. The nodal variables and 
equations defined at interfaces will be shared between two 
or more processors, which will require some information 
exchange between these “neighboring” processors at 
various points in the algorithm. 

Within each subdomain, the interior nodal variables and 
equations are numbered first, followed by the boundary 
nodal variables and equations, so that after the subdomain 
finite element assembly is performed we obtain the stiffness 
matrix appropriately partitioned as 

(4.2) 

Here, the submatrices Ai, Bi and the load vector bi are fully 
assembled, representing the contributions to the rows of the 
global stiffness matrix from test functions that are nonzero 
only within the interior of the subdomain in question. On 
the other hand, the submatrices Cj and D, and the load 
vector ci are only partially assembled at this stage and have 
to be merged with the equivalent submatrices obtained on 
the subdomain with which it shares nodal grid points. For 
simplicity, we write (4.2) in the aggregated form 

A,& = 6,. (4.3) 

The global linite element assembly can now be performed 
with these subdomain matrices to yield 

a =i T,&T,T, 6=i Tit;,, (4.4) 
I I 

where a is the global stiffness matrix and the matrices Ti are 
permutation matrices that contain the mapping between 
the subdomain node numbering and the global node 
numbering. In practice, however, there is no need to 
explicitly assembly the matrix 2, since the CG algorithm 
only requires the action of A^ with a given vector, which can 
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be computed by using a “subdomain-by-subdomain” 
algorithm, 

(4.5) 

where yj denotes the restriction of the vector y to the sub- 
domain. Here the individual matrix-vector products on each 
subdomain can be performed independently, following 
which the required summation for the nodal unknowns on 
the boundaries is carried out by routing the data between 
the processors that share interface nodes. In this way each 
processor will accumulate the global sum corresponding to 
the interface variables on its subdomain. 

The other computational steps in the CG algorithm are 
the saxpy and the dot-product. The distributed implementa- 
tion of the saxpy operation is quite trivial, since it involves 
no communication. The dot-product, on the other hand, 
requires each processor to compute its portion of the 
dot-product (avoiding overlaps whenever a node belongs 
to a subdomain interface r, shared by more than one 
processor). These individual sums are then combined to 
yield the global sum, which is then redistributed to each 
processor. 

The implementation methodology outlined above is quite 
general, but we develop a detailed performance model for a 
specific application, which is Poisson’s equation in two 
dimensions, using a bilinear finite element discretization. 
For simplicity, we restrict the present discussion to the con- 
sideration of a square region, with J% elements on each 
edge of the domain, so that the number of nodal unknowns 
will be (& + 1)‘. We also assume that m = n/P is a perfect 
square, so that each subdomain consists of m elements. The 
processors can be thought of as being arranged in a 
J’? x 3 grid, to emphasize the communication connec- 
tivity requirements. For this partitioning, therefore each 
processor will have (fi + 1)2 unknowns, with ( 
in the interior, and 4 ,,/& on the interface. 

J m - 1)2 

Each processor is given an identifier, denoted mypid, 
using, say, a lexicographic assignment rule on our logical 
processor grid. It is also useful to have a special notation for 
the nearest neighbor processors on this logical grid. In 
particular, since mypid will share fi + 1 grid points with 
each of the processors to its north, south, east, and west, 
we denote these by mypid.n, mypid.s, mypid.e, mypid.w, 
respectively. It will also share a single corner node with the 
processors in the intermediate directions, i.e., northwest 
etc., but it turns out not to be necessary to have special 
identifiers for these. For the processors on the boundaries 
of our logical grid, one or possibly two of these parameters 
values correspond to “dummy” nodes, a convention that 
simplifies the discussion. 

We first consider the storage requirements in each node 
for the CG algorithm, which can be itemized as follows: 

1. For bilinear finite elements, each nodal unknown is 
connected to nine others in the mesh. We use sparse matrix 
format for the subdomain matrix a i, in which only the non- 
zero entries and index information are stored. The storage 
requirement for it and for the right-hand side b, is then 
IS(J;;; + 1)‘. 

2. The two-dimensional grid point coordinates, 
2(&i + l)2. 

3. Various bookkeeping tables and boundary condition 
data, 3 (fi + 1)’ + 2m. 

4. Vectors used in the CG algorithm, x, r, p, and q, 
4(&z + 1)‘. 

Therefore, summing terms, we obtain for the overall 
storage requirement 

y(Jm+ 1)‘+2m. (4.6) 

Since each processor has sufficient storage for 
approximately 0.5 Mwords (double precision), this restricts 
the number of elements along the edge of each subdomain 
to roughly a maximum of 140. In practice, the maximum 
value is somewhat less than this, since storage is also 
required for the code and kernel routines. 

We turn our attention to the computation costs, and for 
the saxpy it is easily seen that 

T, = a,(&~+ 1)‘. (4.7) 

The constant LY, depends on the node architecture and on 
the compiler, and its experimental value on VICTOR is 
9.14 x 10-6. 

For the dot-product, each processor assumes the respon- 
sibility of computing the partial dot-products for the nodes 
on north and east edges. However, the processors on the 
south (resp. west) boundaries of our logical grid will com- 
pute the partial products for the north, east, and south 
edges (resp. the north, east, west edges). Finally, the 
processor on the southwest corner will compute the partial 
dot-product for all the edge nodes in it, and hence it will be 
the slowest to finish computing this phase. At this point, the 
values in the individual processors are additively combined 
(using the Express utility mentioned earlier), and the 
resulting value is then distributed to all processors. This 
combining function can be optimized by performing it on a 
spanning tree in the connectivity graph of the actual 
hardware. The overall cost is, therefore, 

T,=cr,(&+ 1)*+b2diam(P). (4.8) 

The first term here denotes the time taken by the slowest 
processor in the first phase. The experimental value for cx2 
on VICTOR is 6.56 x 10p6. This is better than c1i because of 
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the special nature of the register set on the FPU of the T8OO 
transputer, on which the saxpy requires 3 loads, 2 ops, and 
a store for each result, whereas, equivalently, for the dot- 
product 2 loads and 2 ops suffice. The second term contains 
the diameter of the processor network (or, equivalently, the 
height of the minimum spanning tree). A least-squares 
analysis of the experimental measurements gives a good fit 
with Bz= 1.7 x lop3 and diam(P)=Z’0.4, for values of P 
greater than 16. The power law dependence of the com- 
bining overhead on P can be ascertained from the linear 
graph in a log-log plot of the experimental data in Fig. 1. 

We now consider the cost of computing the distributed 
matrix-vector product T,,. First, we need the cost of 
message-passing between two neighboring processors, 
which we model in the form L + r/B, where L is the message 
latency, B is the bandwidth, and r is the number of 
transferred words. Again experimental measurements on 
VICTOR indicate the values L= 1.408 x lop3 s and 
B = 2.26 x lo4 words/s (double precision). In comparative 
terms, the startup latency is equivalent to the interprocessor 
transfer of about 32 words and to roughly 440 arithmetic 
operations at each node processor. 

The implementation of the matrix-vector product in the 
CG algorithm is carried out as follows: 

1. Each processor first computes the subdomain 
matrix-vector product. Using a row-oriented sparse matrix 
format for a and an inner-product algorithm, this cost can 
be written as 9a,(& + l)*. 

2. Then each processor executes the following two- 
phase communication algorithm: 

l Phase I. East-West communication. 

- sends its partial sum for the east interface nodes 
to mypid.e 

~ receives a partial sum from mypid.w and adds 
these to the current west interface values 

- sends the updated west interface values to the 
mypid.w 

~ finally receives the updated values from the 
mypid.e and overwrites the current partial sum. 

The total cost for this, ignoring lower order 
computational terms and assuming no overlap of 
sends and receives, is given by 4( L + (fi + 1 )/B). 

l Phase II. Similarly for the North-South directions, 
4(L+ (&z+ 1)/B). 

We remark on two aspects of this particular algorithm. First 
the “corner” nodal unknowns in each subdomain which are 
shared between four processors are correctly summed 
by this two-phase algorithm. Second, if the underlying 
hardware supports bidirectional transfer on each link (as is 
the case with the transputer links on VICTOR then a 
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FIG. 1. Combining overhead in the distributed dot-product. 

savings of possibly up to a factor of 2 in the communication 
costs can be obtained by simultaneously interchanging the 
boundary values during both the communication phases. 
Then both processors involved in this exchange can 
separately compute the updated values, making the final 
“send” unnecessary. In any event, for the particular 
implementation outlined above, we obtain 

T,v=9x3(&+1)‘+8[L+(,j;;;+1)/B]. (4.9) 

The experimental value for clj on VICTOR is 1.805 x 10e5. 
This is worse than c~i and cl2 because of the additional over- 
head of indirect addressing and index bound testing in the 
inner loop of the algorithm. 

Substituting from (4.7)-(4.9) into (4.1) and setting 
m = n/P, we obtain 

Tod(n, P)= (3c(, +2c(,+9cr3)(&@+ 1)*+2fi2diam(P) 

+8[L+(@+ 1)/B]. (4.10) 

The number of parameters in (4.10) may possibly be 
reduced on some other architectures. Many uniprocessor 
architectures have independent parallel functional units, 
pipelined execution, and multiported register files, and on 
these we may expect that c(~ = c(* = a3 = c(, say, to a good 
approximation. For operations on an embedded spanning 
tree one can set /I2 = 2L + CI, with the factor of 2 coming 
from the combining and distribution phases of the 
operation. For a mesh, diam(P) is proportional to P1’* 
(and, equivalently, to log P for a hypercube). 
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For the special case P = 1, the communication terms drop 
out of (4.10) and we obtain 

TCG(% 1)=(3a, +2a,+9c(,)(Jz+l)? (4.11) 

Finally, we note that in Sonneveld’s conjugate gradient 
squared algorithm, each iteration requires 2 matrix-vector 
multiplications, 7 saxpy’s, and 2 dot-products. Therefore, 
similar to (4.1), the time per iteration for this algorithm is 
given by 

T CGS = 2T,, + 7T, + 2T,. (4.12) 

The values of T,,, T,, and T, are identical to those 
computed above for the CG algorithm, and therefore we 
obtain for Tccs(n, P) an expression whose form is 
equivalent to (4.10), except for the different values of the 
coefficients. 

6. PERFORMANCE ANALYSIS 

The parallel efficiency of the CG implementation is given 
by the quantity TCG(n, l)/PT,-.,(n, P). In Fig. 2, we show 
the experimental values for the parallel efficiencies on 
VICTOR for a mesh of 100 x 100 bilinear elements (which, 
as mentioned earlier, is just about the largest problem that 
will lit on a single node). As expected, the efficiency drops off 
as the number of processors is increased, with values of 0.75 
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FIG. 2. Parallel efficiency of the conjugate gradient (CC) implementa- 
tion (V) on VICTOR (100 x 100 bilinear elements mesh). Also shown are 
the equivalent parallel efficiencies for Sonneveld’s conjugate gradient 
squared (CGS) algorithm (0) an another model problem. 

and 0.50 for 24 and 64 processors, respectively. Also shown 
in Fig. 2 is the experimental parallel efficiency for the CGS 
implementation, which drops off to 0.66 on 64 processors. 
One reason for this dropoff is the increase in the com- 
munication to computation ratio of the application, due to 
the fewer elements in each subdomain, as the number of 
processors is increased. The other reason is the increased 
cost of the combining operation, which also explains the 
higher parallel efficiency for the CGS algorithm, since com- 
paring one iteration of CGS to two iterations of CG, we see 
that in the former there is one more saxpy, but two fewer 
dot-product operations. 

As is well known, measuring speedups for fixed size 
problems on distributed memory processors is somewhat 
unrealistic since much of the memory is not utilized as the 
number of processors is increased. One alternative is to 
increase the problem size with the number of processors, so 
that the memory utilization per node remains fixed. The dif- 
ficulty here is that increasing the problem size is equivalent 
to mesh refinement, which changes the condition number of 
the matrix and the convergence properties of the overall 
algorithm, so that even this does not seem to be a 
reasonable methodology. 

A more revealing quantity is the so-called “floating point 
utilization” defined by Moler [7], which estimates the 
megaflop rate for the largest problem that can be solved on 
a given number of processors, relative to the megaflop rate 
for the same algorithm on a hypothetical single processor 
with infinite memory. One difficulty here is that the latter 
quantity cannot be measured experimentally, although it 
can be estimated with a good model (or conservatively, 
replaced by the peak uniprocessor megaflop rate). In the 
present case, however, a good model is available, and we 
can write for the floating point utilization in the form 
TCG(mP, l)/PT,-,(mP, P), and use the definitions in (4.10) 
and (4.11). This quantity is expected to provide a more 
realistic measure of the parallel processing overheads in an 
actual “production-size” application. For this purpose, we 
consider an 800 x 800 bilinear element discretization (with 
641,601 nodal unknowns) on 64 processors, for which the 
estimated floating point utilization for CG is 0.953 
(similarly for CGS we obtain 0.958). Therefore, for each 
iteration of the CG algorithm, only about 4.7 % of the time 
is lost to parallel processing overheads. 

Experimental results for this computation were also 
obtained on a 64-node VICTOR subpartition for the model 
problem, and starting from a zero initial guess, the residual 
was reduced by a factor of lop5 in 399 iterations. The over- 
all solution time was 13.87 min and the time per iteration 
2.086 s (including the time for residual- computation, ter- 
minal I/O etc., which are not accounted for in the analysis). 
Similarly, a time per iteration of 4.267 s was obtained for an 
equivalent computation using the CGS algorithm on a 
simple model convection-diffusion problem. 
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7. FUTURE WORK 

The implementation described here can be extended in a 
number of ways that might improve either the overall 
convergence of the algorithm, or its parallel efficiency. We 
list some of these possible extensions below. 

1. The interior nodal unknowns in each subdomain, 
which are fully summed upon subdomain matrix assembly, 
can be eliminated by substructuring. This substructuring is 
a fully local operation which has the advantage of confining 
the conjugate gradient iteration to the consideration of the 
interface unknowns, while providing a “Schur-complement” 
preconditioning for the iteration. The node storage 
requirements, however, are increased, and this aspect 
requires that careful attention be paid to the nodal ordering 
within each subdomain. In any case, this will decrease the 
size of the largest problem that can be solved on a given 
number of processors, below that in the present method. 

2. For very large processor networks the primary over- 
head is in the dot-product instruction which requires a 
global synchronization and information exchange. The use 
of block algorithms [S] might be helpful in reducing the 
number of such global synchronizations and in maximizing 
the amount of information exchanged during each such 
synchronization. 

3. The use of polynomial preconditioners [9] could 
prove attractive for message-passing parallel computers 
because of their low communication requirements in 
comparison with other preconditioning methods. 
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