
JOURNAL OF COMPUTATIONAL PHYSICS l(H), 396401 (1992)

Performance of the Conjugate Gradient Method on VICTOR

RAMFSH NATARAJAN AND PRATAP PATTNAIK

IBM Thomas J. Watson Research Center, P. 0. Box 704, Yorktown Heights, New York 10598

Received November 29. 1990; revised June 17, 1991

We describe an implementation of the conjugate gradient method on
VICTOR, a 256-node message-passing MIMD parallel computer based
on the T800 transputer, developed at IBM, Yorktown Heights. A
detailed performance analysis is also presented for this algorithm on a
simple but representative application (Poisson’s equation in a square
region discretized using bilinear finite elements). 0 1332 Academic

Press. Inc

1. INTRODUCTION

We describe an implementation of the conjugate gradient
method for symmetric, positive-definite matrix systems on a
message-passing multiprocessor. The matrices are assumed
to be derived from the uniform finite element discretization
of second-order, elliptic partial differential equations on
two-dimensional rectangular domains. This assumption is
primarily made to simplify the programming and analysis,
but we note that by using standard tools such as conformal
mapping and coordinate stretching, more general polygon
domains and graded discretizations can also be treated by
the present approach.

Performance measurements on the VICTOR parallel
computer are presented and analyzed for a representative
self-adjoint model problem (Poisson’s equation on a square
region discretized by bilinear finite elements) as described
in further detail below. For the nonsymmetric matrices
obtained from non-self-adjoint problems, another algo-
rithm (the conjugate gradient squared algorithm of
Sonneveld [11) has also been implemented and analyzed.
However, the low-level details for the nonsymmetric case
do not raise any new significant implementation or
performance issues, and we therefore omit many of these
details here for the sake of brevity.

2. ARCHITECTURAL DESCRIPTION

VICTOR is a 256-node, message-passing MIMD com-
puter developed in the Computer Sciences department at
IBM, Yorktown Heights (Wilcke et al. [4]). The node
processor is the INMOS T8OO transputer, which is a 32-bit

microprocessor with a 20-MHz clock cycle, 4 Mbytes of
on-chip RAM, and a built-in FPU. Each node transputer is
connected through four 20-Mbit/s serial links to other
nodes in a mesh topology, except for designated nodes on
the edge of this mesh which are connected to disks, graphics
devices, and host computers. Multiple user programs can
execute without interference or performance penalty on
distint subpartitions of the 16 x 16 processor mesh. For
example, this means that four different users can be
simultaneously space-sharing the machine, with each using
a distinct 8 x 8 subpartition. A non-intrusive monitoring
tool provides a visual display of memory and link activity in
the nodes during program execution, which is particularly
helpful for detecting runtime execution errors.

3. PROGRAMMING ENVIRONMENT

The Express programming environment in the so-called
“Cubix” mode is used for program development (Fox et al.
[S]). Here, the same program executes on all the nodes,
but although individual nodes are programmed
homogeneously, they can have different execution paths
through this program, synchronizing with other processors
only for message passing (either directly, or indirectly as a
intermediate node for routing messages).

The node programs are written in FORTRAN, which is
augmented by subroutine calls to Express library functions
for message-passing. In addition to the basic point-to-point
message-passing routines, Express provides various
optimized high-level subroutine utilities that can facilitate
program development, of which two deserve special men-
tion in the context of the present application. The first is a
“combining” function for performing global operations on
data in the individual processors (for operators that are
commutative and associative). The second is a set of utilities
for embedding multidimensional grid topologies in the
actual hardware, which allows programs to be written in
terms of the logical geometric connectivity of the problem
without concern for the actual hardware topology, while
retaining full program portability.

0021~9991/92 $5.00

Copyright 0 1992 by Academic Press, Inc.
AII rights of reproduction in any form reserved.

396

PERFORMANCE OF THE CONJUGATE GRADIENT METHOD ON VICTOR 397

4. ALGORITHM DETAILS

The basic (preconditioned) conjugate gradient algorithm
for solving matrix systems of the form Ax = b is shown
below [6]

conjugate gradient (CG):
x0 = initial solution guess
r,=b-Ax,
s,=W’r,
PO = so
po=s;.r,
for k = 0, 1, until convergence do
begin
qk = AP,
ak=d.qk

ak = pkbk

xk+l =Xk+tlkPk

rkil=rk-akqk

s k+l=Mplrk+l

Pk+1=~kT+1.~k+l

bk=Pk+I/Pk

Pk+l=Sk+l+bkPk

enddo

In this paper we only consider the unpreconditioned
version of the algorithm, for which in each iteration, the
arithmetic work is comprised of one matrix-vector multi-
plication to obtain qk, three saxpy operations to obtain
Xk+13 rk+lJ Pkfl, and two dot-product operations to
obtain ok and ljkr respectively. The storage requirements
beyond that for the matrix A and the right-hand side vector
b, are the four vectors for the most recent values of x, r, q,
p which are overwritten on each iteration. Another vector
for the most recent value of s is also required if
preconditioning is used, in addition to any storage for the
preconditioner itself.

5. IMPLEMENTATION DETAILS

The use of preconditioning in the conjugate gradient
algorithm reduces the number of iterations required for
convergence, and the trade-off between the cost of applying
the preconditioner and the improved convergence due to
using it must then be considered. For the unpreconditioned
algorithm, however, it is sufficient to consider the cost per
iteration, which is simply given by

T,, = T,, + 3T, + 2T,, (4.1)

where TM,, T,, TD, are the costs of a matrix-vector
multiplication, a saxpy, and a dot-product, respectively (in
units of seconds). The cost of these three primitives will
depend on certain problem and implementation details, as
discussed in detail below.

The basic strategy for partitioning the problem among
the processors is domain decomposition. We partition the
domain into P open, connected, and disjoint (non-overlap-
ping) regions, denoted by 52,, so that Q = Up 52, and
SZ,n sZ,= 4, i# j, where P is the number of processors.
Furthermore, we assume that the boundaries between any
two adjacent subdomains, say 52, and Qj (denoted by r,)
correspond to the edges or faces of a conforming finite
element mesh on Q. Note that U Tlj- n TV= 80, fij = r,,,
and Tii = 4 unless there are some nodal points that belong
to the interfaces of Q, and Q,. The underlying assumption
here is that the finite element mesh partitioning is much
finer than the subdomain partitioning. Now each
subdomain is assigned to a processor that is responsible for
performing the computations involving the nodal variables
and equations that belong to it. The nodal variables and
equations defined at interfaces will be shared between two
or more processors, which will require some information
exchange between these “neighboring” processors at
various points in the algorithm.

Within each subdomain, the interior nodal variables and
equations are numbered first, followed by the boundary
nodal variables and equations, so that after the subdomain
finite element assembly is performed we obtain the stiffness
matrix appropriately partitioned as

(4.2)

Here, the submatrices Ai, Bi and the load vector bi are fully
assembled, representing the contributions to the rows of the
global stiffness matrix from test functions that are nonzero
only within the interior of the subdomain in question. On
the other hand, the submatrices Cj and D, and the load
vector ci are only partially assembled at this stage and have
to be merged with the equivalent submatrices obtained on
the subdomain with which it shares nodal grid points. For
simplicity, we write (4.2) in the aggregated form

A,& = 6,. (4.3)

The global linite element assembly can now be performed
with these subdomain matrices to yield

a =i T,&T,T, 6=i Tit;,, (4.4)
I I

where a is the global stiffness matrix and the matrices Ti are
permutation matrices that contain the mapping between
the subdomain node numbering and the global node
numbering. In practice, however, there is no need to
explicitly assembly the matrix 2, since the CG algorithm
only requires the action of A^ with a given vector, which can

398 NATARAJAN AND PATTNAIK

be computed by using a “subdomain-by-subdomain”
algorithm,

(4.5)

where yj denotes the restriction of the vector y to the sub-
domain. Here the individual matrix-vector products on each
subdomain can be performed independently, following
which the required summation for the nodal unknowns on
the boundaries is carried out by routing the data between
the processors that share interface nodes. In this way each
processor will accumulate the global sum corresponding to
the interface variables on its subdomain.

The other computational steps in the CG algorithm are
the saxpy and the dot-product. The distributed implementa-
tion of the saxpy operation is quite trivial, since it involves
no communication. The dot-product, on the other hand,
requires each processor to compute its portion of the
dot-product (avoiding overlaps whenever a node belongs
to a subdomain interface r, shared by more than one
processor). These individual sums are then combined to
yield the global sum, which is then redistributed to each
processor.

The implementation methodology outlined above is quite
general, but we develop a detailed performance model for a
specific application, which is Poisson’s equation in two
dimensions, using a bilinear finite element discretization.
For simplicity, we restrict the present discussion to the con-
sideration of a square region, with J% elements on each
edge of the domain, so that the number of nodal unknowns
will be (& + 1)‘. We also assume that m = n/P is a perfect
square, so that each subdomain consists of m elements. The
processors can be thought of as being arranged in a
J’? x 3 grid, to emphasize the communication connec-
tivity requirements. For this partitioning, therefore each
processor will have (fi + 1)2 unknowns, with (
in the interior, and 4 ,,/& on the interface.

J m - 1)2

Each processor is given an identifier, denoted mypid,
using, say, a lexicographic assignment rule on our logical
processor grid. It is also useful to have a special notation for
the nearest neighbor processors on this logical grid. In
particular, since mypid will share fi + 1 grid points with
each of the processors to its north, south, east, and west,
we denote these by mypid.n, mypid.s, mypid.e, mypid.w,
respectively. It will also share a single corner node with the
processors in the intermediate directions, i.e., northwest
etc., but it turns out not to be necessary to have special
identifiers for these. For the processors on the boundaries
of our logical grid, one or possibly two of these parameters
values correspond to “dummy” nodes, a convention that
simplifies the discussion.

We first consider the storage requirements in each node
for the CG algorithm, which can be itemized as follows:

1. For bilinear finite elements, each nodal unknown is
connected to nine others in the mesh. We use sparse matrix
format for the subdomain matrix a i, in which only the non-
zero entries and index information are stored. The storage
requirement for it and for the right-hand side b, is then
IS(J;;; + 1)‘.

2. The two-dimensional grid point coordinates,
2(&i + l)2.

3. Various bookkeeping tables and boundary condition
data, 3 (fi + 1)’ + 2m.

4. Vectors used in the CG algorithm, x, r, p, and q,
4(&z + 1)‘.

Therefore, summing terms, we obtain for the overall
storage requirement

y(Jm+ 1)‘+2m. (4.6)

Since each processor has sufficient storage for
approximately 0.5 Mwords (double precision), this restricts
the number of elements along the edge of each subdomain
to roughly a maximum of 140. In practice, the maximum
value is somewhat less than this, since storage is also
required for the code and kernel routines.

We turn our attention to the computation costs, and for
the saxpy it is easily seen that

T, = a,(&~+ 1)‘. (4.7)

The constant LY, depends on the node architecture and on
the compiler, and its experimental value on VICTOR is
9.14 x 10-6.

For the dot-product, each processor assumes the respon-
sibility of computing the partial dot-products for the nodes
on north and east edges. However, the processors on the
south (resp. west) boundaries of our logical grid will com-
pute the partial products for the north, east, and south
edges (resp. the north, east, west edges). Finally, the
processor on the southwest corner will compute the partial
dot-product for all the edge nodes in it, and hence it will be
the slowest to finish computing this phase. At this point, the
values in the individual processors are additively combined
(using the Express utility mentioned earlier), and the
resulting value is then distributed to all processors. This
combining function can be optimized by performing it on a
spanning tree in the connectivity graph of the actual
hardware. The overall cost is, therefore,

T,=cr,(&+ 1)*+b2diam(P). (4.8)

The first term here denotes the time taken by the slowest
processor in the first phase. The experimental value for cx2
on VICTOR is 6.56 x 10p6. This is better than c1i because of

PERFORMANCE OF THE CONJUGATE GRADIENT METHOD ON VICTOR 399

the special nature of the register set on the FPU of the T8OO
transputer, on which the saxpy requires 3 loads, 2 ops, and
a store for each result, whereas, equivalently, for the dot-
product 2 loads and 2 ops suffice. The second term contains
the diameter of the processor network (or, equivalently, the
height of the minimum spanning tree). A least-squares
analysis of the experimental measurements gives a good fit
with Bz= 1.7 x lop3 and diam(P)=Z’0.4, for values of P
greater than 16. The power law dependence of the com-
bining overhead on P can be ascertained from the linear
graph in a log-log plot of the experimental data in Fig. 1.

We now consider the cost of computing the distributed
matrix-vector product T,,. First, we need the cost of
message-passing between two neighboring processors,
which we model in the form L + r/B, where L is the message
latency, B is the bandwidth, and r is the number of
transferred words. Again experimental measurements on
VICTOR indicate the values L= 1.408 x lop3 s and
B = 2.26 x lo4 words/s (double precision). In comparative
terms, the startup latency is equivalent to the interprocessor
transfer of about 32 words and to roughly 440 arithmetic
operations at each node processor.

The implementation of the matrix-vector product in the
CG algorithm is carried out as follows:

1. Each processor first computes the subdomain
matrix-vector product. Using a row-oriented sparse matrix
format for a and an inner-product algorithm, this cost can
be written as 9a,(& + l)*.

2. Then each processor executes the following two-
phase communication algorithm:

l Phase I. East-West communication.

- sends its partial sum for the east interface nodes
to mypid.e

~ receives a partial sum from mypid.w and adds
these to the current west interface values

- sends the updated west interface values to the
mypid.w

~ finally receives the updated values from the
mypid.e and overwrites the current partial sum.

The total cost for this, ignoring lower order
computational terms and assuming no overlap of
sends and receives, is given by 4(L + (fi + 1)/B).

l Phase II. Similarly for the North-South directions,
4(L+ (&z+ 1)/B).

We remark on two aspects of this particular algorithm. First
the “corner” nodal unknowns in each subdomain which are
shared between four processors are correctly summed
by this two-phase algorithm. Second, if the underlying
hardware supports bidirectional transfer on each link (as is
the case with the transputer links on VICTOR then a

10-3 1
10’

I
lo2

Number of Processors

103

FIG. 1. Combining overhead in the distributed dot-product.

savings of possibly up to a factor of 2 in the communication
costs can be obtained by simultaneously interchanging the
boundary values during both the communication phases.
Then both processors involved in this exchange can
separately compute the updated values, making the final
“send” unnecessary. In any event, for the particular
implementation outlined above, we obtain

T,v=9x3(&+1)‘+8[L+(,j;;;+1)/B]. (4.9)

The experimental value for clj on VICTOR is 1.805 x 10e5.
This is worse than c~i and cl2 because of the additional over-
head of indirect addressing and index bound testing in the
inner loop of the algorithm.

Substituting from (4.7)-(4.9) into (4.1) and setting
m = n/P, we obtain

Tod(n, P)= (3c(, +2c(,+9cr3)(&@+ 1)*+2fi2diam(P)

+8[L+(@+ 1)/B]. (4.10)

The number of parameters in (4.10) may possibly be
reduced on some other architectures. Many uniprocessor
architectures have independent parallel functional units,
pipelined execution, and multiported register files, and on
these we may expect that c(~ = c(* = a3 = c(, say, to a good
approximation. For operations on an embedded spanning
tree one can set /I2 = 2L + CI, with the factor of 2 coming
from the combining and distribution phases of the
operation. For a mesh, diam(P) is proportional to P1’*
(and, equivalently, to log P for a hypercube).

400 NATARAJAN AND PATTNAIK

For the special case P = 1, the communication terms drop
out of (4.10) and we obtain

TCG(% 1)=(3a, +2a,+9c(,)(Jz+l)? (4.11)

Finally, we note that in Sonneveld’s conjugate gradient
squared algorithm, each iteration requires 2 matrix-vector
multiplications, 7 saxpy’s, and 2 dot-products. Therefore,
similar to (4.1), the time per iteration for this algorithm is
given by

T CGS = 2T,, + 7T, + 2T,. (4.12)

The values of T,,, T,, and T, are identical to those
computed above for the CG algorithm, and therefore we
obtain for Tccs(n, P) an expression whose form is
equivalent to (4.10), except for the different values of the
coefficients.

6. PERFORMANCE ANALYSIS

The parallel efficiency of the CG implementation is given
by the quantity TCG(n, l)/PT,-.,(n, P). In Fig. 2, we show
the experimental values for the parallel efficiencies on
VICTOR for a mesh of 100 x 100 bilinear elements (which,
as mentioned earlier, is just about the largest problem that
will lit on a single node). As expected, the efficiency drops off
as the number of processors is increased, with values of 0.75

1.0 0
9

0

V
0

v 0

0

v

0
0

V

0.4 ’
0 20 40

Number of Processors

60

FIG. 2. Parallel efficiency of the conjugate gradient (CC) implementa-
tion (V) on VICTOR (100 x 100 bilinear elements mesh). Also shown are
the equivalent parallel efficiencies for Sonneveld’s conjugate gradient
squared (CGS) algorithm (0) an another model problem.

and 0.50 for 24 and 64 processors, respectively. Also shown
in Fig. 2 is the experimental parallel efficiency for the CGS
implementation, which drops off to 0.66 on 64 processors.
One reason for this dropoff is the increase in the com-
munication to computation ratio of the application, due to
the fewer elements in each subdomain, as the number of
processors is increased. The other reason is the increased
cost of the combining operation, which also explains the
higher parallel efficiency for the CGS algorithm, since com-
paring one iteration of CGS to two iterations of CG, we see
that in the former there is one more saxpy, but two fewer
dot-product operations.

As is well known, measuring speedups for fixed size
problems on distributed memory processors is somewhat
unrealistic since much of the memory is not utilized as the
number of processors is increased. One alternative is to
increase the problem size with the number of processors, so
that the memory utilization per node remains fixed. The dif-
ficulty here is that increasing the problem size is equivalent
to mesh refinement, which changes the condition number of
the matrix and the convergence properties of the overall
algorithm, so that even this does not seem to be a
reasonable methodology.

A more revealing quantity is the so-called “floating point
utilization” defined by Moler [7], which estimates the
megaflop rate for the largest problem that can be solved on
a given number of processors, relative to the megaflop rate
for the same algorithm on a hypothetical single processor
with infinite memory. One difficulty here is that the latter
quantity cannot be measured experimentally, although it
can be estimated with a good model (or conservatively,
replaced by the peak uniprocessor megaflop rate). In the
present case, however, a good model is available, and we
can write for the floating point utilization in the form
TCG(mP, l)/PT,-,(mP, P), and use the definitions in (4.10)
and (4.11). This quantity is expected to provide a more
realistic measure of the parallel processing overheads in an
actual “production-size” application. For this purpose, we
consider an 800 x 800 bilinear element discretization (with
641,601 nodal unknowns) on 64 processors, for which the
estimated floating point utilization for CG is 0.953
(similarly for CGS we obtain 0.958). Therefore, for each
iteration of the CG algorithm, only about 4.7 % of the time
is lost to parallel processing overheads.

Experimental results for this computation were also
obtained on a 64-node VICTOR subpartition for the model
problem, and starting from a zero initial guess, the residual
was reduced by a factor of lop5 in 399 iterations. The over-
all solution time was 13.87 min and the time per iteration
2.086 s (including the time for residual- computation, ter-
minal I/O etc., which are not accounted for in the analysis).
Similarly, a time per iteration of 4.267 s was obtained for an
equivalent computation using the CGS algorithm on a
simple model convection-diffusion problem.

PERFORMANCE OF THE CONJUGATE GRADIENT METHOD ON VICTOR 401

7. FUTURE WORK

The implementation described here can be extended in a
number of ways that might improve either the overall
convergence of the algorithm, or its parallel efficiency. We
list some of these possible extensions below.

1. The interior nodal unknowns in each subdomain,
which are fully summed upon subdomain matrix assembly,
can be eliminated by substructuring. This substructuring is
a fully local operation which has the advantage of confining
the conjugate gradient iteration to the consideration of the
interface unknowns, while providing a “Schur-complement”
preconditioning for the iteration. The node storage
requirements, however, are increased, and this aspect
requires that careful attention be paid to the nodal ordering
within each subdomain. In any case, this will decrease the
size of the largest problem that can be solved on a given
number of processors, below that in the present method.

2. For very large processor networks the primary over-
head is in the dot-product instruction which requires a
global synchronization and information exchange. The use
of block algorithms [S] might be helpful in reducing the
number of such global synchronizations and in maximizing
the amount of information exchanged during each such
synchronization.

3. The use of polynomial preconditioners [9] could
prove attractive for message-passing parallel computers
because of their low communication requirements in
comparison with other preconditioning methods.

1.

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

P. Sonneveld, SIAM J. Sci. Stat. Comput. 10, 36 (1986).

ZMS T800 Archifecture, Technical Note 6 (INMOS Limited, Bristol,
UK, 1986).

Express Reference Manual (Parasoft Corporation, Pasadena, CA,
1990).

W. W. Wilcke, R. C. Booth, D. Brown, D. G. Shea, F. Tong,
and D. Zukowski, Design and Application of an Experimental Multi-
processor, IBM Research Report RC 56722 (1987).

G. Fox et al., Solving Problems on Concurrent Processors, Vol. I
(Prentice-Hall, Englewood Cliffs, NJ, 1988).

G. H. Golub and C. F. Van Loan, Matrix Computations (John Hopkins,
Baltimore, 1989).

C. Moler, in Hypercube Multiprocessors 1985, edited by M. T. Heath
(SIAM, Philadelphia, 1986).

D. P. O’Leary, Linear Algebra Appl. 29, 293 (1980).

0. G. Johnson, C. A. Micchelli and G. Paul, SIAM J. Namer. Anal. 20,
362 (1983).

